Programs

Home/Programs

Day 2 : Oct 09,2024
Day 1 Day 2 Day 3
Agenda Download
Keynote Speakers
Biography:
Dror Malka received his BSc and MSc degrees in electrical engineering from the Holon Institute of Technology (HIT) in 2008 and 2010, respectively, Israel. He has also completed a BSc degree in Applied Mathematics at HIT in 2008 and received his Ph.D. degree in electrical engineering from Bar-Ilan University (BIU) in 2015, Israel. Currently, he is a Senior Lecturer in the Faculty of Engineering at HiT. His major fields of research are nanophotonics, super-resolution, AI silicon photonics and fiber optics. He has published around 70 refereed journal papers, and 80 conference proceedings paper.

Abstract:
The operation of a four-channel multiplexer, utilizing multimode interference (MMI) wavelength division multiplexing (WDM) technology, can be designed through the cascading of MMI couplers or employing angled MMI couplers. However, conventional designs often occupy a larger footprint, spanning a few millimeters, thereby escalating the energy power requirements for the photonic chip. In response to this challenge, we propose an innovative design for a four-channel silicon nitride (Si?N?) MMI coupler with a compact footprint. This design utilizes only a single MMI coupler unit, operating within the O-band spectrum. The resulting multiplexer device can efficiently transmit four channels with a wavelength spacing of 20 nm, covering the O-band spectrum from 1270 to 1330 nm, after a short light propagation of 22.8 µm. Notably, the multiplexer achieves a power efficiency of 70% from the total input energy derived from the four O-band signals. Power losses range from 1.24 to 1.67 dB, and the MMI coupler length and width exhibit a favorable tolerance range. Leveraging Si?N? material and waveguide inputs and output tapers minimizes light reflections from the MMI coupler at the input channels. Consequently, this Si?N?-based MMI multiplexer proves suitable for deployment in O-band transceiver data centers employing WDM methodology. Its implementation offers the potential for higher data bitrates while maintaining an exemplary energy consumption profile for the chip footprint.
Biography:
Rick Trebino was born in Boston on January 18, 1954.  He was quite poor as a child, but, on scholarships, he earned his high-school degree from Phillips Academy in Andover, Massachusetts, his B.A. from Harvard in 1977, and his Ph.D. from Stanford in 1983.  Shortly afterward, while at Sandia National Laboratories in Livermore, California, he invented Frequency-Resolved Optical Gating (FROG), the first technique for the complete measurement of an ultrashort laser pulse in time, solving this long-standing famous problem in the field of ultrafast optics and advancing pulse measurement from blurry black-and-white snapshots to high-resolution full-color displays.  In 1998, he accepted a Chair at Georgia Tech, where he extended humankind’s measurement capability to the complete spatiotemporal electromagnetic field of even highly complex ultrashort pulses. He currently also develops more advanced approaches to optics and physics education, doing for lectures what Gutenberg did for books.  He’s received numerous prestigious awards, including 2024’s R.W. Wood Prize and several for his pioneering contributions to optics and physics education, and is a Fellow of four scientific societies.  He was recently ranked by ScholarGPS in the top 0.1% of all scientists and #1 of all 19,000 ultrashort-laser-pulse scientists worldwide.  He freely provides his elegant, entertaining, and fully narrated multimedia entire-course video lectures to the world via his web site to encourage the creation of free high-quality video lectures in academia in general.

Abstract:
The vast majority of the greatest scientific discoveries of all time have resulted directly from more powerful techniques for measuring light. Indeed, our most important source of information about our universe is light, and our ability to extract information from it is limited only by our ability to measure it. Interestingly, most of the light in our universe remains immeasurable, involving long pulses or continuous beams of relatively broadband light, necessarily involving ultrafast and extremely complex temporal variations in their intensity and phase (color). As a result, it’s important to develop techniques for measuring, ever more completely, light with ever more complex ultrafast variations in time. The problem is severely complicated by the fact that the timescales involved correspond to the shortest events ever created, and measuring an event in time seems to require a shorter one, which, by definition, doesn’t exist! And, unfortunately, many methods currently in common use measure only artifacts and/or cannot distinguish between short, simple, stable pulses and long, complex, unstable ones.
Fortunately, we have developed simple, elegant techniques for reliably and completely measuring such light, using the light to measure itself and extracting a light pulse's complete intensity and phase vs. time—and, more recently, time and space simultaneously. One such technique involves making an optical spectrogram of the pulse, whose mathematics is solvable only because the Fundamental Theorem of Algebra fails for polynomials of two variables. More recent methods allow the simple measurement of the complete spatio-temporal electric field [E(x,y,z,t)] of a single, arbitrary, potentially complex light pulse without the need to average over multiple pulses. 
Biography:
Rick Trebino was born in Boston on January 18, 1954.  He was quite poor as a child, but, on scholarships, he earned his high-school degree from Phillips Academy in Andover, Massachusetts, his B.A. from Harvard in 1977, and his Ph.D. from Stanford in 1983.  Shortly afterward, while at Sandia National Laboratories in Livermore, California, he invented Frequency-Resolved Optical Gating (FROG), the first technique for the complete measurement of an ultrashort laser pulse in time, solving this long-standing famous problem in the field of ultrafast optics and advancing pulse measurement from blurry black-and-white snapshots to high-resolution full-color displays.  In 1998, he accepted a Chair at Georgia Tech, where he extended humankind’s measurement capability to the complete spatiotemporal electromagnetic field of even highly complex ultrashort pulses. He currently also develops more advanced approaches to optics and physics education, doing for lectures what Gutenberg did for books.  He’s received numerous prestigious awards, including 2024’s R.W. Wood Prize and several for his pioneering contributions to optics and physics education, and is a Fellow of four scientific societies.  He was recently ranked by ScholarGPS in the top 0.1% of all scientists and #1 of all 19,000 ultrashort-laser-pulse scientists worldwide.  He freely provides his elegant, entertaining, and fully narrated multimedia entire-course video lectures to the world via his web site to encourage the creation of free high-quality video lectures in academia in general.

Abstract:
The academic lecture was invented in ancient Sumer, using a stylus to inscribe cuneiform on a clay tablet. While it was a good idea then, it hasn’t improved in the 5000 years since then. It has even nearly completely sat out the spectacular ongoing digital revolution, continuing to comprise a stark talking head before a bleak black (or white) board. Worse, lecture preparation is quite time-consuming, and teaching materials, such as lecture notes, are not helpful. So, the tedious task of preparing lectures is currently performed independently—and hence massively redundantly—by every teacher on earth. In other words, the world’s current educational-lecture paradigm is analogous to that of books prior to Gutenberg’s invention of the printing press. As a result, lecture preparation by the world’s 50 million post-primary-school instructors currently absorbs tens of billions of human-hours annually, corresponding to a cost of roughly a trillion dollars a year. So, it’s time to re-invent the lecture and to do for lectures what Gutenberg did for books. And I’ve done so for two college courses, Modern Physics and Optics. During the pandemic, I created highly polished talking-head-free multimedia videos of all the lectures for the entirety of both courses. And I freely share them with the world, saving students much boredom and stress and lecturers much time—freeing up instructors’ time for more personal interaction with their students.

In short, I believe that this societal transformation is long overdue, and the resulting better educated population would yield additional benefits for the entire world for the foreseeable future. 
Biography:
Dr. Tom Chittenden, a GIGA Society Fellow with over 25 years of experience, is Chief Scientific Officer at BullFrog AI. He oversees global scientific operations and leads the development of the bfLEAPTM technology platform. This platform embodies cutting-edge advancements in causal AI and scientific machine learning, offering innovative solutions to complex challenges in healthcare. Additionally, Dr. Chittenden holds an Honorary Professorship at Queen Mary University of London's Digital Environment Research Institute, contributing to cutting-edge research in data science.

Abstract:
Recent advancements in high-throughput genomic sequencing technologies have enabled the acquisition of vast amounts of biological data, offering unprecedented insights into the molecular basis of human diseases. Despite these advancements, understanding the causal relationships underlying disease pathogenesis remains a significant challenge. In this seminar, we will explore the integration of causal inference techniques and scientific machine learning (SciML) approaches in biomedical research. By harnessing novel computational strategies, such as causal AI, we aim to decipher complex biological mechanisms and uncover actionable insights for drug target discovery and clinical trial optimization. Through case studies and practical examples, we will demonstrate the transformative potential of these methodologies in accelerating the development and repositioning of more effective therapeutic interventions. Join us as we delve into the intersection of data science, causal reasoning, and biomedical innovation, paving the way for personalized medicine and improved patient outcomes.

Speaker Sessions
Biography:
Nardev Ramanathan is an associate research director and leads Lux Research’s coverage of Consumer Health Sciences as part of the CPG team. In this role, Nardev works closely with senior innovation leaders across the globe to guide and shape their corporate innovation strategies around new and emerging consumer health technologies, such as digital biomarkers, digital therapeutics, health wearables, AI in consumer health, and consumer genomics. As one of the senior members of the CPG team, he is also involved in planning the research agenda for the CPG team with other research leaders and more broadly supports cross-functional research related to the intersection between food, nutrition and agricultural innovation impact consumer health, working with subject matter experts across Lux. Nardev earned his Ph.D. in Clinical Biochemistry from the University of Cambridge on an A*STAR Overseas Ph.D. scholarship. For his doctoral thesis, he identified a novel genetic mutation responsible for a rare inherited disease called lipodystrophy in a patient in the Middle East and went on to elucidate the molecular mechanism underlying the disease. Nardev has authored multiple peer-reviewed publications around metabolic health topics, many of which continue to be highly cited.

Abstract:
Digital biomarkers are emerging as a key technology in health and wellness, opening up new ways to use established sensors for early identification and management of disease. Digital biomarkers are key to personalizing healthcare, in the sense of both maintaining wellness and treating disease. Unlike traditional biomarkers, digital biomarkers provide distinct advantages, in that data can be collected continuously and noninvasively and can be analyzed and processed at scale in combination with other data streams, unlocking deeper insights. Consumers and patients can thus benefit from early diagnostics and timely interventions, and healthcare providers benefit from a more seamless and accessible technology for managing disease. In this presentation, I will delve deeper into what digital biomarkers are, discuss new and emerging opportunities, and share examples of innovative developers making progress in this space. 

Biography:
Professor Vladimir G. Chigrinov is Professor of Hong Kong University of Science and Technology since 1999. He is an Expert in Flat Panel Technology in Russia, recognized by the World Technology Evaluation Centre, 1994, and SID Fellow since 2008. He is an author of 6 books, 31 reviews and book chapters, about 333 journal papers, more than 718 Conference presentations, and 121 patents and patent applications including 50 US patents in the field of liquid crystals since 1974. He got Excellent Research Award of HKUST School of Engineering in 2012. He obtained Gold Medal and The Best Award in the Invention & Innovation Awards 2014 held at the Malaysia Technology Expo (MTE) 2014, which was hosted in Kuala Lumpur, Malaysia, on 20-22 Feb 2014. He is a Member of EU Academy of Sciences (EUAS) since July 2017. 

Since 2018 until 2020 he works as Professor in the School of Physics and Optoelectronics Engineering in Foshan University, Foshan, China. 2020-2024 Vice President of  Fellow of Institute of Data Science and Artificial Intelligence (IDSAI) Since 2021 distinguished Fellow of Institute of Data Science and Artificial Intelligence. 

Abstract:
Photoalignment and photopatterning has been proposed and studied for a long time [1]. Light is responsible for the delivery of energy as well as phase and polarization information to materials systems. It was shown that photoalignment liquid crystals by azodye nanolayers could provide high quality alignment of molecules in a liquid crystal (LC) cell. Over the past years, a lot of improvements and variations of the photoalignment and photopatterning technology has been made for photonics applications. In particular, the application of this technology to active optical elements in optical signal processing and communications is currently a hot topic in photonics research [2]. Sensors of external electric field, pressure and water and air velocity based on liquid crystal photonics devices can be very helpful for the indicators of the climate change.

We will demonstrate a physical model of photoalignment and photopatterning based on rotational diffusion in solid azodye nanolayers. We will also highlight the new applications of photoalignment and photopatterning in display and photonics such as: (i) fast high resolution LC display devices, such as field sequential color ferroelectric LCD; (ii) LC sensors; (iii) LC lenses; (iv) LC E-paper devices, including electrically and optically rewritable LC E-paper; (v) photo induced semiconductor quantum rods alignment for new LC display applications; (vi)100% polarizers based on photoalignment; (vii) LC smart windows based on photopatterned diffraction structures; (vii) LC antenna elements with a voltage controllable frequency.
Biography:
Haroon Asghar is currently working as an Assistant Professor in Physics at the National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan. He completed his M.Sc. and M.Phil. degree in Physics from Quaid-I-Azam University, Islamabad, Pakistan in 2010, and 2012, respectively. He received his Ph.D. degree in Physics from the Department of Physics/Tyndall National Institute University College Cork, Ireland in 2018. His Ph.D. research involved the stabilization of quantum nanostructure-based semiconductor mode-locked lasers using delayed optical feedback and optical injection locking techniques. He has authored and co-authored more than 65 peer-reviewed journals, and 19 international conference proceedings. He also delivered many invited and contributed talks at international and national conferences. His current research interests include the generation of ultra-short and ultra-fast optical pulses from semiconductor mode-locked lasers, and fiber lasers and to improvement of their timing stability for potential applications in telecommunications

Abstract:
Pulsed fiber lasers have been considered significant attention in recent decades due to their potential applications in spectroscopy, micro-machining, telecommunications, and medical. To establish a pulse operation in lasers, a saturable absorber (SA) is desired in the cavity that modulates the optical losses. Therefore, to achieve a pulsed operation, SA is paramount in the fiber lasers. Various SAs based on carbon nanotubes, black phosphorous, graphene, transition metal oxides, metal-organic frameworks (MOFs), MXenes, MAX Phase materials, transition metal dichalcogenides, and semiconductor saturable-absorbers mirrors (SESAMs) have been proposed and demonstrated in fiber lasers. However, complicated optical alignment, stability, complex fabrication processes, and environmental sensitivity restrict practical applications of SAs for Q-switching and mode-locking operation. To date, many experimental techniques such as deposition of nanoparticles on a fiber ferrule, thin-film based SAs, and pulsed laser deposition technique have been proposed and demonstrated to fabricate SAs in laser cavities for Q-switching and mode-locking of optical pulses. However, the SAs including thin-film and nanoparticles-based techniques are highly unstable and difficult to align inside the laser cavity as they are environmentally sensitive and have a low damage threshold. To address this challenge, we successfully proposed and demonstrated an optimum stable ZnO-SA prepared using a pulsed laser deposition technique.
Biography:
Thiyagarajan Raman graduated Ph.D., Physics from Bharathidasan University, Trichy in 2014 and completed two Post-Doctoral Positions: (i) High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China and (ii) Technical University of Dresden (TUD), Dresden, Germany. Currently, working as a Research Scientist at Indian Institute of Technology Madras, Chennai. Briefly to say, I have adequate experience on High Pressure experiments with different kind of high pressure cells for various measurements (XRD at world-wide synchrotron facilities, Raman, electrical resistivity, and magnetization). It has been resulted in 38 peer-reviewed publications (150 impact factors) including 20 numbers of Q1 publications and 10 numbers of Q2 publications. 

Abstract: 

The magnetic and transport properties of manganite system are controlled by the electron bandwidth of eg orbitals, which is directly depends on electron transfer between A- and B- sites. The bandwidth of the systems can be effectively tuned by internal pressure like doping and/or external perturbations like magnetic field (H) and hydrostatic pressure (P). Thus, investigation on manganites under both internal and external parameters may give clear picture on the electronic nature. In this regard, this abstract is focused to investigate the effect of H and P on magnetic, magnetocaloric and transport properties of various perovskite manganites and bilayer manganites. Further, the critical behavior is also analyzed for a second-order ferromagnetic phase transition of perovskite manganites.

P compresses the lattice constants, increases the Mn-O-Mn bond angle, makes the unit cell more cubic, and hence reduces the local distortion of the MnO6 octahedra, Jahn-Teller distortion and electron-lattice coupling. As a result, the overlap of the Mn3+ eg orbital and O2- 2p orbital is increased - thus enhancing the electron hopping rate through Zener Double-Exchange interaction. Indeed, for proposed manganites with paramagnetic insulating (PMI) to ferromagnetic metallic (FMM) phase transitions, TC increases almost linearly with P. But, P effect on TC is larger than that predicted by band theory. This implies that the electron-phonon coupling is also reduced by P. Thus, the manganites are sensitive to all types of perturbations internal or external pressure and they strongly influence the magnetic, magnetocaloric and transport properties of the manganite systems.
Biography:
Carla Leibowitz is an AI in healthcare executive, entrepreneur and advisor. She served as VP of Business and Corporate development at Flatiron, where she led growth initiatives, M&A and strategic partnerships. Prior, she was the Chief Business Development Officer at Paige.ai, the first company to get CE mark and FDA clearances for AI products in the pathology space.  There, she led partnership teams across verticals as well as marketing and product strategy. At Paige, Carla’s role encompassed ecosystem development, evidence generation and market strategy. Over this role and previous roles, including Business Lead of healthcare AI research partnerships at NVIDIA and head of Corporate Development and Strategy at Arterys, Carla has successfully led strategy and crafted partnerships at the intersection of AI and healthcare, bringing together technologists, clinicians and product experts to build and study AI-based products in the healthcare space. Carla has an MBA from the Stanford Graduate School of Business and engineering degrees from both MIT and Stanford.

Abstract:
AI is transforming our world, and is accelerating the transformation of healthcare into the digital realm. It opens the door to revolutionizing digital health by enhancing personalization, efficiency, and accessibility across large sectors of the industry, and huge investment has poured into the space. Since the early 2010s, the digital health landscape has evolved from tentative adoption to a sudden explosion of AI-driven innovations, reshaping areas from drug design to EHR documentation. This talk will explore how AI has transitioned from a novel concept to a cornerstone of modern healthcare, driving advancements in personalized medicine, remote monitoring, and healthcare delivery. Early efforts to integrate AI faced challenges in data availability, interoperability, regulatory hurdles, and provider skepticism. However, recent breakthroughs in machine learning and data analytics have accelerated AI’s adoption, making it indispensable in areas like drug development and chronic disease management. We will examine the pivotal role AI plays in enhancing diagnostic precision, particularly in medical imaging, and how it has streamlined administrative tasks, freeing healthcare providers to focus more on patient care. The talk will also address how AI’s predictive analytics are enabling proactive population health management and the ethical considerations that accompany these advances, such as data privacy and algorithmic bias. Attendees will gain insights into the current state of AI in digital health, explore case studies that highlight successful implementations, and discuss the future challenges and opportunities in this rapidly evolving field. Join us as we delve into the transformative impact of AI on digital health and what it means for the future of healthcare.
Biography:
Dr. Navneet Boddu is a specialist in Regenerative Medicine. He is triple board-certified in Pain Medicine, Anesthesiology and Echo-cardiogram with more than 25 years of experience.  At Advanced Pain and Regenerative Specialists, Dr. Boddu provides personalized treatments for his patients’ spine and joint disorders. Using the latest medical technology and evidence-based cellular therapies, like autologous bone marrow, fat stem cells and other biologics, Dr. Boddu uses the patient’s own cells to regenerate and heal joints, tendons, ligaments, and spine disorders.  Dr Boddu is a five-time Top Doctor in Pain Medicine and Anesthesiology in San Diego County. He is a contributing author of chapters about nerve blocks and interventional pain injections in the textbook Interventional Orthopedics Procedures. He also co-authored chapters in the Textbook of Regenerative Medicine. He conducted FDA-authorized umbilical cord stem cell treatments for patients with severe COVID. Dr Boddu is an anesthesiologist at Scripps Medical Center, Encinitas. He is a member of the scientific board at Therapeutic Solutions International Inc., a  biotech company and industry leader in stem cell, exosome, and immunotherapy technologies. Dr. Boddu was chairman of the Anesthesiology Department at TriCity Medical Center from 2015 to 2017. Prior to that he was chairman at Providence Mission Hospital Laguna Beach, where he practiced Pain Medicine and Anesthesiology. 
Biography:
F. J. Duarte is a laser physicist, quantum physicist, and inventor, with interests in experimental physics and related theory, who has made a number of original contributions in the fields of tunable lasers and quantum optics. He introduced the generalized multiple-prism grating dispersion theory, has made various unique innovations to the physics and architecture of tunable laser oscillators, discovered polymer-nanoparticle gain media, demonstrated quantum coherent emission from electrically-pumped organic semiconductors, has pioneered the use of Dirac's quantum notation in classical optics, and derived the probability amplitude for quantum entanglement from transparent quantum interferometric principles, à la Dirac. The initial phase of his work, on N-slit quantum interferometry, led to the introduction of extremely-expanded laser beam illumination (3000:1) for interferometric techniques in microscopy and nanoscopy applied to industrial imaging measurements at the Eastman Kodak Company (1987). Duarte studied at the School of Mathematics and Physics of Macquarie University where he was a student of the quantum physicist J. C. Ward. He also studied semiconductor physics under R. E. Aitchison. At Macquarie he was the first to graduate with First Class Honours in Physics (1978). His honours thesis was entitled Excitation Processes in Continuous Wave Rare Gas-Metal Halide Vapour Lasers. Within three years he completed his doctoral research in physics, under the guidance of J. A. Piper, on optically-pumped molecular lasers. In 1981 he became a Commonwealth Post-Doctoral Fellow at the University of New South Wales where he built high-resolution UV tunable lasers for IR-UV double-resonance spectroscopy. His career history includes appointments with Macquarie University, The University of New South Wales, The University of Alabama, State University of New York, the Photographic Research Laboratories, the Imaging Research Laboratories (both at the Eastman Kodak Company), the US Army Missile Command, the US Army Space and Missile Defense Command (leading tunable laser research projects), and The University of Alabama in Huntsville. He has also held honorary appointments at Macquarie University and The University of New Mexico. During the 1987-1992 period he was chairman of the Lasers series of conferences that focused on SDI research. At Optica, Duarte has served in various capacities and on the editorial boards of Applied Optics, Optics & Photonics News, and Optics Letters. In 2006 he founded Interferometric Optics; a nimble research company focusing on quantum interference, quantum entanglement, and tunable lasers. 

Abstract:
Intrinsic coherent quantum emission (ICQE) is, in its coherence, indistinguishable from narrow-linewidth laser emission.  Here, we describe this emission from its quantum origin and identify practical interferometric emitter nanodevices that yield ICQE.  Applications are discussed.  

Young Research Forum
Biography:
Mostafa Yones is a current undergraduate student pursuing a bachelor’s degree in biomedical engineering. He has practical experience in medical devices and clinical engineering. Mustafa is actively involved in enhancing hospital management through digital transformation. He has participated in several competitions related to IoT and Artificial Intelligence, achieving notable rankings. Additionally, he is currently a member of a team working on a PR event and has previously been involved in a charitable organization and student activities. His passion for technology and community service drives his commitment to making a positive impact in the healthcare sector.

Abstract:
The clinical engineering student experience is unique, blending engineering knowledge with clinical applications. Students learn to install, configure, and maintain medical devices, contributing to improved patient care. During their studies, they develop strong analytical and technical skills, along with a deep understanding of healthcare systems. Practical training in hospitals allows students to work alongside professionals, facing real-world challenges such as maintaining devices and ensuring safety. This hands-on experience enhances problem-solving abilities, teamwork, and communication skills. Research projects are also essential, as students explore new technologies or improve existing devices, encouraging innovation in the field. Overall, the clinical engineering student experience is comprehensive and engaging, preparing them for a career that combines engineering and healthcare.
 
For those looking to work in hospitals, I can share how to quickly integrate into the work environment based on my personal experience. I will highlight key skills and practical abilities needed, along with a well-structured, tested, and effective schedule. This plan will enable students to gain essential knowledge within a month. Additionally, I will discuss the career path for clinical engineers, the necessary certifications, and my personal insights on professional development.
 
Moreover, having a proven and effective schedule allows students to focus on critical areas, ensuring they are well-prepared for real-world challenges. This structured approach boosts confidence and equips them with the tools to excel in their roles. For students aspiring to work in hospitals, adhering to a well-planned schedule is crucial. It helps them organize their time effectively, focusing on essential skills required in the workplace. By dedicating time to study the technical aspects of medical devices and engage in practical training, students can enhance their confidence and competencies.
Abstract:
Light is one of the most important environmental factors affecting plant development and morphology. LED lighting technologies for plant cultivation and postharvest storing are also rapidly evolving, and lamps are designed to optimize their light emissions in the photosynthetically active spectrum. Under these light regimens, however, little information is available in literature about minimum photosynthetic photon flux density (PPFD) for indoor production and storage of leafy vegetables and herbs. Plant leaves are the important physiological parameter related to plant growth, photosynthetic capacity, and used as stress and disease damage identifiers. The Raman spectrum analysis of leaf is a reliable, quick, and non-destructive method, which can be used for biochemical sensing of plant’s metabolism, reproduction, and growth in plants under stress or unfavourable condition. This study aims at defining the optimal PPFD for storage of leafy vegetable at super market shelves. The effects of light quality on biomass and internal quality is examined by Raman Spectroscopy.
Experimental results states that in leafy vegetables, kept under 200 ?mol m-2 s-1 antioxidant capacity were higher as compared with plants supplied with PPFD = 100 ?mol m-2 s-1. Furthermore, Carotenoids, Nitrate and Phenylalanine are the antioxidant and secondary metabolite which changes under different light intensity.